コンテンツにスキップ

2023

A Survey of Large Language Models


序論

本論文は、大規模言語モデル(LLM)の発展とその現状を包括的に調査し、研究者がLLMの理解と利用を深めるための基礎を提供することを目的としています。

大規模言語モデルとは

LLMとは、膨大なデータを学習することで、文章の生成や理解を可能にする人工知能モデルです。これらのモデルは、言語処理の精度を飛躍的に向上させ、多くの応用分野で活用されています。

進化の過程

初期の言語モデルは統計的手法に基づいていましたが、現在のLLMはニューラルネットワークを用いており、文脈に応じた高度な表現を学習します。特にGPT-4などの最新モデルは、一般的なタスク解決能力を持つとされています。

大規模言語モデルの特徴

LLMは、以下の三つの主要な特徴を持っています: 1. 新たな能力の発現:従来の小規模なモデルでは見られなかった高度なタスク処理能力。 2. 人間とAIのインターフェースの変革:プロンプトを通じた操作方法の普及。 3. 研究とエンジニアリングの融合:大規模なデータ処理と分散トレーニングが必要。

研究の課題

LLMの研究には以下の課題があります: 1. 出現能力の解明:LLMがなぜ新たな能力を持つのかの理解が不足。 2. 訓練の難しさ:高い計算リソースが必要であり、繰り返しの実験が困難。 3. 人間の価値観との整合性:有害な内容を生成するリスクの管理。

結論

本論文は、LLMの進化とその特徴を体系的にまとめ、今後の研究や応用における指針を示しています。詳細な分析やリソースは、GitHubプロジェクトで提供されています。


AI generated diagram

graph TD
    A[大規模言語モデルの調査] --> B[大規模言語モデルとは]
    A --> C[進化の過程]
    A --> D[大規模言語モデルの特徴]
    A --> E[研究の課題]
    A --> F[結論]

    B --> B1[LLMとは]
    B1 --> B2[文章の生成や理解]
    B1 --> B3[多くの応用分野で活用]

    C --> C1[統計的手法からニューラルネットワークへ]
    C1 --> C2[文脈に応じた高度な表現]
    C1 --> C3[最新モデル(GPT-4)]

    D --> D1[新たな能力の発現]
    D --> D2[人間とAIのインターフェースの変革]
    D --> D3[研究とエンジニアリングの融合]

    E --> E1[出現能力の解明]
    E --> E2[訓練の難しさ]
    E --> E3[人間の価値観との整合性]

    F --> F1[LLMの進化と特徴のまとめ]
    F --> F2[今後の研究や応用の指針]
    F --> F3[GitHubプロジェクト]

Don't Make Your LLM an Evaluation Benchmark Cheater


序論

本論文では、大規模言語モデル(LLM)の評価における不適切なベンチマークの使用とその影響について議論します。特に、評価セットに関連するデータがモデル訓練に使用される「ベンチマーク漏洩」の問題に焦点を当てます。

評価ベンチマークの問題

LLMの性能を評価するために、多くの高品質な評価ベンチマークが提案されています。しかし、これらのベンチマークの適切な使用と、公正なモデル比較に対する懸念が増しています。

ベンチマーク漏洩の影響

ベンチマーク漏洩は、テストデータや関連データが訓練データに含まれる現象を指します。これにより、LLMの評価結果が不正に向上し、モデルの性能評価が信頼できなくなります。

実験と結果

実験では、異なる漏洩設定で複数のモデルを訓練し、評価しました。その結果、ベンチマーク漏洩が評価結果を不正に向上させることが確認されました。特に、小規模なモデルでも大規模なモデルを上回る結果を示すことがありました。

改善策

評価ベンチマークの適切な使用を促進するために、以下の改善策を提案します: - データ汚染のチェックを実施 - 評価ベンチマークの多様なソースからの収集 - テストプロンプトの漏洩を避ける

結論

ベンチマーク漏洩の問題は、LLMの評価において重大なリスクをもたらします。適切な評価方法を確立し、公正な比較を実現するために、提案された改善策を採用することが重要です。

LLMMaps -- A Visual Metaphor for Stratified Evaluation of Large Language Models


LLMMaps - 大規模言語モデルの階層的評価のための視覚的メタファー

序論

この論文では、大規模言語モデル(LLM)の性能を詳細に評価するための新しい視覚化手法「LLMMaps」を提案します。特に、質問応答データセットを用いてLLMの知識能力を評価するための方法を提供します。

背景

LLMは多くのタスクで優れた性能を示していますが、誤情報を生成する「幻覚」問題があります。これにより、LLMの評価が重要となっていますが、従来の評価方法は全体的な精度を報告するだけで、詳細な洞察を提供していません。

LLMMapsの設計

LLMMapsは、質問応答データセットとLLMの応答を内部知識構造に変換し、さまざまなサブフィールドにおける性能を可視化します。また、複数のLLMの詳細な比較も可能です。

知識分野の階層化

質問応答データセットを知識階層に基づいて階層化する方法を提案します。この階層化により、LLMの性能をより細かく評価し、開発者が改善すべき分野を特定することができます。

実験と結果

BLOOM、GPT-2、GPT-3、ChatGPT、LLaMa-13Bなどの最新のLLMを用いて、LLMMapsの有効性を確認しました。また、ユーザー評価を通じて、その利便性と限界を検証しました。

結論

LLMMapsは、LLMの知識能力を詳細に評価するための有力なツールです。これにより、開発者はLLMの性能を向上させるための具体的な指針を得ることができます。

LLMMaps

Learn From Model Beyond Fine-Tuning: A Survey


序論

本論文は、従来のファインチューニングを超えた「Learn From Model(LFM)」アプローチについて包括的にレビューします。LFMは、既存の大規模言語モデル(FM)を活用し、新しいタスクへの適応や性能向上を図る手法です。

モデルチューニング

ファインチューニング

ファインチューニングは、既存のモデルに新しいデータで再訓練を行い、特定のタスクに適応させる方法です。これにより、モデルのパフォーマンスを向上させることができますが、計算コストが高く、過学習のリスクもあります。

アダプターチューニング

アダプターチューニングは、モデルの内部パラメータを固定し、追加のトレーニング可能なパラメータ(アダプター)を挿入して、特定のタスクに適応させる方法です。これにより、計算コストを削減しつつ、性能を維持します。

プロンプトチューニング

プロンプトチューニングは、モデルのパラメータを固定し、最適なプロンプトを設計してモデルの性能を引き出す方法です。ホワイトボックスとブラックボックスの設定があり、後者はモデルのパラメータにアクセスできない状況でも効果を発揮します。

インストラクションチューニング

インストラクションチューニングは、モデルに命令形式でデータを提供し、特定のタスクを実行する能力を向上させる方法です。これにより、見たことのないタスクにも対応できる汎用性が向上します。

モデル蒸留

モデル蒸留は、大規模な教師モデルから小規模な生徒モデルへ知識を移転し、計算リソースが限られた環境でも高性能を維持する手法です。

モデル再利用

モデル再利用は、複数のモデルの予測を組み合わせて全体の性能を向上させる方法です。これにより、個々のモデルの強みを活かしつつ、弱点を補完します。

メタラーニング

メタラーニングは、新しいタスクに迅速に適応できるモデルを設計する手法です。これにより、連続的な学習や複数タスクの同時処理が可能になります。

モデル編集

モデル編集は、モデルの知識を直接調整して性能を向上させる方法です。これにより、再訓練のコストを抑えつつ、モデルの適応性を高めます。

結論

LFMは、データ中心の学習を超え、既存の大規模モデルを活用する新しいパラダイムです。これにより、計算コストの削減、データプライバシーの保護、モデルの汎用性の向上が期待されます。

Textbooks Are All You Need


序論

本論文では、コード生成に特化した新しい大規模言語モデルphi-1を紹介します。このモデルは、他の競合モデルに比べて大幅に小型化されているにもかかわらず、高い性能を発揮します。

研究の目的

モデルの性能向上には高品質なデータが重要であることを示し、特に「教科書品質」のデータを使用することで、小規模なモデルでも高性能を達成できることを目指しています。

方法

phi-1は、GPT-3.5を使用して生成された教科書データと、Webから収集された高品質なデータを組み合わせて訓練されました。また、Pythonのコード生成タスクに特化したデータセットで微調整を行いました。

結果

phi-1は、HumanEvalとMBPPのベンチマークで高い精度を達成しました。特に、微調整後のphi-1は、多くの既存モデルを上回る性能を示しています。

結論

高品質なデータを使用することで、計算資源を大幅に節約しつつ、高性能なモデルを訓練できることが示されました。phi-1は、小規模なデータセットと少ない訓練時間で優れた結果を達成しています。

Attention Is All You Need


序論

この論文では、従来のリカレントニューラルネットワーク(RNN)や畳み込みニューラルネットワーク(CNN)を排除し、セルフアテンション機構(Self-Attention)のみを使用した新しいネットワークアーキテクチャ「Transformer」を提案します。

背景

リカレントモデルはシーケンスの各位置を順次処理するため、並列化が困難でした。一方、アテンション機構はシーケンス内の全ての位置間の依存関係を捉えることができ、計算効率の向上が期待されます。

モデルアーキテクチャ

エンコーダとデコーダ

  • エンコーダ: セルフアテンション機構とポイントワイズの全結合層を持つ。
  • デコーダ: エンコーダと同様の構造に加え、エンコーダの出力に対するアテンション機構を持つ。

アテンションメカニズム

  • スケールド・ドットプロダクトアテンション: クエリとキーのドット積にスケーリングを施し、ソフトマックス関数で重みを計算。
  • マルチヘッドアテンション: 複数のアテンション機構を並行して実行し、異なる表現空間から情報を抽出。

訓練方法

  • データ: WMT 2014英独・英仏翻訳データセットを使用。
  • ハードウェア: 8つのNVIDIA P100 GPUで訓練。
  • 最適化手法: Adamオプティマイザを使用し、学習率を段階的に変化。

結果

  • 性能向上: Transformerモデルは、従来の最先端モデルよりも高いBLEUスコアを達成。
  • 効率性: 同等の性能を持つ他のモデルに比べて、訓練にかかる時間が大幅に短縮。

結論

Transformerは、リカレントや畳み込み層を使わずに高い性能と効率を実現する新しいアーキテクチャです。この研究は、アテンション機構の可能性を示し、今後のモデル設計に大きな影響を与えるでしょう。

On the Origin of LLMs: An Evolutionary Tree and Graph for 15,821 Large Language Models


LLMの起源:15,821の大規模言語モデルの進化的ツリーとグラフ

序論

本論文は、大規模言語モデル(LLM)の進化的な関係を明らかにすることを目的としています。特に、2022年以降のLLMの急速な発展とその多様性を体系的に理解するための研究です。

研究の背景

LLMは、特にChatGPTやBardのように、多くのユーザーに利用されています。毎週多くの新しいLLMが発表され、Hugging Faceに登録されていますが、それらの総合的なインデックスは存在しません。

方法

Hugging Faceに登録されているLLMの名称を用いて、階層的クラスタリングを実施しました。n-gramsやTF-IDF(Term Frequency-Inverse Document Frequency)を用いて、LLMのコミュニティを特定し、意味のあるサブグループに分類しました。

結果

本研究では、LLMのファミリーを特定し、それらを意味のあるサブグループに分類することに成功しました。また、15,821のLLMを視覚的に探索できるウェブアプリケーション「Constellation」を公開しました。

結論

「Constellation」を利用することで、研究者や開発者はLLMの関係性やトレンドを迅速に把握することが可能となりました。これは、LLMのさらなる発展や新しい研究の基盤となるでしょう。

補足情報

詳細な分析結果や視覚化ツールについては、こちらで確認できます。

Output


AI generated diagram

flowchart TD
    A[データ収集] --> B[パラメータ抽出]
    B --> C[テキスト特徴抽出]
    C --> D[階層的クラスタリング]
    D --> E[コミュニティ検出]
    E --> F[視覚化]
    F --> G[ウェブアプリケーションの展開]
    G --> H[結果のレビュー]
    H --> I[結論: 大規模言語モデルの理解と分類を強化]

    A[Start: データ収集 \nHugging Faceからのモデル名、ダウンロード数、いいね数の収集]
    B[パラメータ抽出 \n正規表現を使用してモデル名からパラメータを抽出]
    C[テキスト特徴抽出 \nTF-IDFとn-gramsを使用してモデル名から特徴を抽出]
    D[階層的クラスタリング \n類似性に基づいてモデルをグループ化]
    E[コミュニティ検出 \nルーヴァン法を使用してグラフ内のコミュニティを検出]
    F[視覚化 \nインタラクティブなダイアグラムやワードクラウド、散布図をウェブアプリで提供]
    G[ウェブアプリケーションの展開 \nデータの動的探索を可能にする公開ウェブアプリケーション]
    H[結果のレビュー \n得られた結果を確認し、モデル間の関係を評価]
    I[End: 結論 \n大規模言語モデルの体系的な整理と分類を通じて理解を深める]

Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models


序論

本論文では、商用言語モデルAPIの使用料金が言語によって異なることを示し、その公平性について分析しています。特に、異なる言語で同じ情報を伝えるために必要なトークン数の違いが料金に与える影響を調査します。

研究の目的

言語モデルAPIの料金体系が言語間で公平であるかどうかを評価し、トークナイズの非均一性が料金とモデルの性能に与える影響を明らかにすることを目的としています。

方法

  • RQ1: トークン数の違い: 22の多様な言語でのトークン分割の影響を分析。
  • RQ2: コスト: トークン数の違いがAPI使用料金に与える影響を評価。
  • RQ3: モデルの有用性: トークン分割の非均一性がモデルの性能に与える影響を評価。
  • RQ4: 社会経済的影響: API料金と性能の違いが経済的格差に与える影響を分析。

結果

  1. トークン数の違い: ラテン文字を使用する言語は他の言語よりも少ないトークン数で情報を伝えることができる。
  2. コスト: ラテン文字を使用する言語はAPI使用料金が低く、非ラテン文字を使用する言語は高い料金がかかる。
  3. モデルの有用性: 高いトークン分割率を持つ言語では、コンテキスト内学習の性能が低下する。
  4. 社会経済的影響: 開発途上国の言語使用者は、高い料金を支払わなければならないことが多い。

結論

商用言語モデルAPIの料金体系とトークナイズの方法を見直し、より公平なシステムを構築することが求められます。NLPコミュニティもトークナイズの問題にもっと注目する必要があります。

Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond


序論

この論文は、大規模言語モデル(LLM)を実践的に活用するための包括的なガイドです。研究者やエンドユーザーが、LLMを効果的かつ効率的に利用するための実践的な知識と洞察を提供します。

LLMの紹介

最新のGPTスタイルやBERTスタイルのLLMについて簡単に紹介し、それぞれのモデルがどのような訓練戦略、アーキテクチャ、使用ケースを持つかを説明します。

データの重要性

LLMの性能に影響を与えるデータの役割について詳しく説明します。前処理データ、訓練データ、テストデータの重要性を強調し、それぞれのステージでのデータの影響を分析します。

NLPタスクの実践ガイド

具体的なNLPタスクに対するLLMの使用ケースと非使用ケースについて詳しく説明します。テキスト分類、名前付きエンティティ認識(NER)、質問応答など、各タスクにおけるLLMの適用可能性を評価します。

結論

LLMの利用に関する実践的な洞察とベストプラクティスを提供し、研究者や実務者が自分のNLPタスクでLLMの力を最大限に活用できるよう支援します。

Ecosystem Graphs: The Social Footprint of Foundation Models


序論

この論文は、基礎モデル(Foundation Models, FM)が社会に与える影響を評価するための「Ecosystem Graphs」という新しいフレームワークを提案します。特に、ChatGPTやStable Diffusionなどのモデルがどのように利用され、影響を与えているかを可視化します。

背景

基礎モデルは、言語、画像、コード、タンパク質構造など多岐にわたる分野で広く利用され、社会に大きな影響を与えています。しかし、これらのモデルが具体的にどのように影響を与えているかを詳細に理解するためのツールは不足しています。

Ecosystem Graphsの提案

Ecosystem Graphsは、データセット、モデル、アプリケーションなどの「資産」をノードとして、技術的および社会的依存関係をエッジとしてグラフ構造で表現します。各ノードには詳細なメタデータが付与され、透明性を高めます。

実験と結果

Ecosystem Graphsを用いて、262の資産(64のデータセット、128のモデル、70のアプリケーション)と356の依存関係をドキュメント化しました。このグラフを通じて、主要な資産や組織間の関係を明らかにし、透明性を向上させました。

考察

Ecosystem Graphsは、研究者、産業界、政策立案者など多様なステークホルダーに対して価値を提供します。これにより、基礎モデルの開発と利用に関する理解が深まり、適切な対策が講じられることが期待されます。

結論

Ecosystem Graphsは、基礎モデルの社会的影響を評価するための強力なツールです。今後の研究や実践において、これを活用することで、より透明性の高いエコシステムの構築が可能となります。